1,393 research outputs found

    The SIMRAND methodology: Theory and application for the simulation of research and development projects

    Get PDF
    A research and development (R&D) project often involves a number of decisions that must be made concerning which subset of systems or tasks are to be undertaken to achieve the goal of the R&D project. To help in this decision making, SIMRAND (SIMulation of Research ANd Development Projects) is a methodology for the selection of the optimal subset of systems or tasks to be undertaken on an R&D project. Using alternative networks, the SIMRAND methodology models the alternative subsets of systems or tasks under consideration. Each path through an alternative network represents one way of satisfying the project goals. Equations are developed that relate the system or task variables to the measure of reference. Uncertainty is incorporated by treating the variables of the equations probabilistically as random variables, with cumulative distribution functions assessed by technical experts. Analytical techniques of probability theory are used to reduce the complexity of the alternative networks. Cardinal utility functions over the measure of preference are assessed for the decision makers. A run of the SIMRAND Computer I Program combines, in a Monte Carlo simulation model, the network structure, the equations, the cumulative distribution functions, and the utility functions

    Introduction to SIMRAND: Simulation of research and development project

    Get PDF
    SIMRAND: SIMulation of Research ANd Development Projects is a methodology developed to aid the engineering and management decision process in the selection of the optimal set of systems or tasks to be funded on a research and development project. A project may have a set of systems or tasks under consideration for which the total cost exceeds the allocated budget. Other factors such as personnel and facilities may also enter as constraints. Thus the project's management must select, from among the complete set of systems or tasks under consideration, a partial set that satisfies all project constraints. The SIMRAND methodology uses analytical techniques and probability theory, decision analysis of management science, and computer simulation, in the selection of this optimal partial set. The SIMRAND methodology is truly a management tool. It initially specifies the information that must be generated by the engineers, thus providing information for the management direction of the engineers, and it ranks the alternatives according to the preferences of the decision makers

    A contemporary view of systems engineering

    Get PDF
    The concept of a 'system' is defined, and the 'systems approach' is discussed. Four contemporary examples of the systems approach are presented: an operations research project, the planning-programming-budgeting system, an information processing system, and aerospace programs

    Thermal power systems small power systems applications project. Decision analysis for evaluating and ranking small solar thermal power system technologies. Volume 1: A brief introduction to multiattribute decision analysis

    Get PDF
    The principal concepts of the Keeney and Raiffa approach to multiattribute decision analysis are described. Topics discussed include the concepts of decision alternatives, outcomes, objectives, attributes and their states, attribute utility functions, and the necessary independence properties for the attribute states to be aggregated into a numerical representation of the preferences of the decision maker for the outcomes and decision alternatives

    Trajectory selection for the Mariner Jupiter/Saturn 1977 project

    Get PDF
    The use of decision analysis to facilitate a group decision-making problem in the selection of trajectories for the two spacecraft of the Mariner Jupiter/Saturn 1977 Project. A set of 32 candidate trajectory pairs was developed. Cardinal utility function values were assigned to the trajectory pairs, and the data and statistics derived from collective choice rules were used in selecting the science-preferred trajectory pair

    Spaceborne power systems preference analyses. Volume 2: Decision analysis

    Get PDF
    Sixteen alternative spaceborne nuclear power system concepts were ranked using multiattribute decision analysis. The purpose of the ranking was to identify promising concepts for further technology development and the issues associated with such development. Four groups were interviewed to obtain preference. The four groups were: safety, systems definition and design, technology assessment, and mission analysis. The highest ranked systems were the heat-pipe thermoelectric systems, heat-pipe Stirling, in-core thermionic, and liquid-metal thermoelectric systems. The next group contained the liquid-metal Stirling, heat-pipe Alkali Metal Thermoelectric Converter (AMTEC), heat-pipe Brayton, liquid-metal out-of-core thermionic, and heat-pipe Rankine systems. The least preferred systems were the liquid-metal AMTEC, heat-pipe thermophotovoltaic, liquid-metal Brayton and Rankine, and gas-cooled Brayton. The three nonheat-pipe technologies selected matched the top three nonheat-pipe systems ranked by this study

    The SIMRAND 1 computer program: Simulation of research and development projects

    Get PDF
    The SIMRAND I Computer Program (Version 5.0 x 0.3) written in Microsoft FORTRAN for the IBM PC microcomputer and its compatibles is described. The SIMRAND I Computer Program comprises eleven modules-a main routine and ten subroutines. Two additional files are used at compile time; one inserts the system or task equations into the source code, while the other inserts the dimension statements and common blocks. The SIMRAND I Computer Program can be run on most microcomputers or mainframe computers with only minor modifications to the computer code

    Spaceborne power systems preference analyses. Volume 1: Summary

    Get PDF
    Sixteen alternative spaceborne nuclear power system concepts were ranked using multiattribute decision analysis to identify promising concepts for further technology development. Four groups interviewed were: safety, systems definition and design, technology assessment, and mission analysis. The ranking results were consistent from group and for different utility function models for individuals

    The RANDOM computer program: A linear congruential random number generator

    Get PDF
    The RANDOM Computer Program is a FORTRAN program for generating random number sequences and testing linear congruential random number generators (LCGs). The linear congruential form of random number generator is discussed, and the selection of parameters of an LCG for a microcomputer described. This document describes the following: (1) The RANDOM Computer Program; (2) RANDOM.MOD, the computer code needed to implement an LCG in a FORTRAN program; and (3) The RANCYCLE and the ARITH Computer Programs that provide computational assistance in the selection of parameters for an LCG. The RANDOM, RANCYCLE, and ARITH Computer Programs are written in Microsoft FORTRAN for the IBM PC microcomputer and its compatibles. With only minor modifications, the RANDOM Computer Program and its LCG can be run on most micromputers or mainframe computers
    corecore